A Multi-Omic Approach to Elucidate Contaminant Modes-of-Action in the Zebrafish Larvae

Susie Huang, J. Benskin, B. Chandramouli, N. Veldhoen, C. Helbing, J. Cosgrove

shuang@axys.com
Challenges in Environmental Monitoring

• Assessment/monitoring contaminants are difficult
• Environmental samples are complex
• Sensitivity issues with whole animal standard toxicity assays
• Demands for a high throughput, sensitive and reliable evaluation method
Omics Technology

- Increase detection sensitivity
- Early indicator of environmental impact
- Multi-omics approach → insights towards important molecular interactions

Preventative action

Early indicators

Adverse biological outcomes
Zebrafish Larvae (*Danio rerio*)

- A broadly applicable model species
- Established strains
- Alternative and equivalent testing version to the adult
- A whole organism *in vitro* assay
Objectives of the Study

1. Capture unique molecular signatures in response to chemical exposure
 - Metabolomics
 - Transcriptomics

2. Identify interactions and establish biological modes-of-actions
Zebrafish Larvae Exposure Design

<table>
<thead>
<tr>
<th>Age</th>
<th>Untreated</th>
<th>VEH</th>
<th>3 Conc.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 hpf</td>
<td>Embryo Media</td>
<td>0.1% EtOH</td>
<td>PPCPs, metals, petroleum derivatives, endocrine disruptors, mixtures, effluent, etc</td>
</tr>
</tbody>
</table>

*Environmentally relevant concentrations

- **Contaminants**
 - 5 X
 - AB/Tub strain
 - 24h exposure
 - Metabolomics
 - 80 larvae/replicate
 - Transcriptomics
 - 8 larvae/replicate
Omics Tools – Targeted Metabolomics

Targets of Interest
- Primary metabolites
- 216 targets → 8 classes

Instrumental Analysis
- LC- or FI-MS/MS
- Quantification by isotope dilution or internal standard approaches
Omic Tools – Targeted Transcriptomics

• ZF qPCR Toolbox
 – 5 normalizers
 – 33 target genes harvested from literature and vetted

• Biological System Populated
 – Energy/beta oxidation, xenobiotic, lipid/fatty acid metabolism
 – Glutamate, GABA synthesis/metabolism
 – Ion transportation/metabolism
 – Peroxisome proliferator
 – Endocrine response
 – DNA damage, oxidative stress, proteolysis
 – Immunoregulation
 – Transcription, cell signaling
 – Neuron regulation/development
Omics Tools – Populated Biological Pathways

- response to copper ion
- response to cadmium ion
- response to metal ion
- response to inorganic substance
- response to transition metal ion transport
- neuron-neuron synaptic transmission
- ionotropic glutamate receptor signaling pathway
- synaptic transmission, glutamatergic
- glutamate receptor signaling pathway
- # of genes
- superoxide metabolic process
- cellular response to reactive oxygen species
- removal of superoxide radical
- reactive oxygen species metabolic process
- Perioxidases
- cellular response to oxygen radical
- cellular response to superoxide
- anatomical structure homeostasis
- Steroid hormone biosynthesis
- response to xenobiotic stimulus
- NOD-like receptor signaling pathway
- Arginine biosynthesis
- small molecule biosynthetic process
- regulation of growth
- regulation of neuron apoptotic process
- neuron apoptotic process
- cell-type specific apoptotic process
- negative regulation of neuron death
- regulation of neuron death
- neuron death
- # of genes
- g:Profiler
- Cytoscape V3.0
RESULTS – DIPHENHYDRAMINE
An anti-histamine compound
• Summary of the observations
• Separation of vehicle control (CC) and treatment groups
• Effect observable in low dose
• Cross Validated:
 • Q2>0.6
 • Permutation test:p <0.05
Transcript Abundance

- 6 genes were affected
- A general reduction in transcript abundance
- Effects observed in the low dose group

Increasing concentrations (2, 200, 2000 µl DPH/L)
Integration of Omics

- Cross Validated: Q2<0.5; permutation P-value<0.05
Integration of Omics

Metabolomics Networks

Transcript Affected

Relative Fold Change

- VEH
- DPH
Integration of Omics

Metabolite Change

- Normalized Concentration
 - VEH DPH
 - Glu
 - Gln

Transcript Change

- Relative Fold Change
 - VEH DPH
 - gria2b
 - slc2a9l2

VIP scores

AXYS ENVIRIO
Summary

- DPH at environmentally relevant level induced significant changes
- Metabolite and transcript changes can be used in network/pathway analysis
- Gene expression complements metabolomic analysis as indicator of metabolic effect at the transcript level
- This approach may provide a more robust identification of environmental impacts
Acknowledgements

Industrial Research and Development Fellowship

AXYS: Targeted Metabolomics

qPCR training and analysis

Contact: shuang@axys.com