Biodegradation of N-ethyl Perfluorooctane Sulfonamido Ethanol-based Phosphate Diester (SAmPAP diester) in Marine Sediments

Jonathan Benskin,¹,² Michael G. Ikonomou,² Frank A.P.C. Gobas,³ Timothy H. Begley,⁴ Million B. Woudneh,¹ John R. Cosgrove¹

¹. AXYS Analytical Services Ltd., Sidney BC, Canada
². Institute of Ocean Sciences (DFO), Sidney BC, Canada
³. Simon Fraser University, Burnaby BC, Canada
⁴. Center for Food Safety and Applied Nutrition (USFDA), College Park, MD, USA
SAmPAP Production and Use

- Major use of SAmPAP esters from 1970s-2002 as grease-proofing agents in food contact paper and packaging.
SAmPAP Production and Use

• Major use of SAmPAP esters from 1970s-2002 as grease-proofing agents in food contact paper and packaging.

• Formulations (e.g. FC-807) typically consisted of 10% mono-, 85% di-, and 5% tri-esters.
Why study SAmPAPs?

1) Potential PFOS-precursors

- SAmPAP esters are among numerous potential perfluorooctane sulfonate (PFOS)-precursors.

- PFOS is persistent, bioaccumulative, globally distributed in the environment. Developmental toxicant in lab animals. (refs: Giesy and Kannan 2001, Conder et al. 2012, Lau et al. 2004, others)
Why study SAmPAPs?

2) High production volume substances

• SamPAP mono- and diesters among predictions of 610 commercially relevant, persistent and bioaccumulative organics (Howard and Muir 2010).

• In 1997, sales of commercial SAmPAP formulation (FC-807) represented the highest quantity of PFOS-equivalents sold by 3M out of all PFOS-precursor or PFOS-containing commercial substances (EPA doc AR226-0681).
3) Stability unclear

- Limited data on stability of high-molecular weight (M.W.) PFOS-precursor candidates (phosphate-based surfactants and polymers).

Why study SAmPAPs?

- SAmPAP diester (high M.W. PFOS-precursor candidate)
- Intermediates (low M.W. PFOS-precursor candidates)
- PFOS
3) Stability unclear

- Limited data on stability of high-molecular weight (M.W.) PFOS-precursor candidates (phosphate-based surfactants and polymers).

- Even for low molecular weight substances, biodegradation studies limited to N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE) in sludge.

Why study SAmPAPs?

![Chemical structures of SAmPAP diester, Sludge, EtFOSE, and PFOS]
Hypothesis and Objectives

Objective:
Investigate biodegradation of SAmPAP diester and EtFOSE in sediments.
Objective:
Investigate biodegradation of SAmpPAP diester and EtFOSE in sediments.

Higgins et al. 2005 \([\Sigma \text{PFOS-precursors}] > [\text{PFOS}]\) in sediments from Tokyo Bay, San Francisco Bay, Baltimore Harbour.

Ahrens et al. 2009 \([\Sigma \text{PFOS-precursors}] > [\text{PFOS}]\) in sediments from Tokyo Bay, San Francisco Bay, Baltimore Harbour.

PFOS and PFOS-precursors in sediments from Vancouver, B.C.

Source: Benskin et al. 2012
Hypotheses:
1) Occurrence of low-molecular weight perfluorooctane sulfonamides in sediments arises from biodegradation of high-molecular weight precursors.
2) low-molecular weight perfluorooctane sulfonamides are a source of PFOS in sediment.
Experimental Design

• Sediments pooled from locations around False Creek (Vancouver, BC, Canada).
• Half of sediment autoclaved and treated with 1% mercuric chloride.
• 4 g of sediment (inactive or active) placed into 15mL centrifuge tube.
Experimental Design

- 120 d
- 107 d
- 53 d
- 26 d
- 13 d
- 6 d
- 3 d
- 18 h
- 2 h
- 0

4°C, 25°C

- 150ng SAmPAP diester
- 250ng EtFOSE

x3 x3 x1
Experimental Design

Internal Controls:

• 5ng internal negative control-perfluorodecanoate (PFDA)

\[
\begin{align*}
\text{F}_3\text{C} & \text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{CF}_2\text{O}^-
\end{align*}
\]

• 350ng internal positive control \(^{13}\)C-monoisononyl phthalate (\(^{13}\)C-MNoP)

\[
\begin{align*}
\text{O} & \text{C}^{13}\text{C} \text{H}_3 \text{C}^{13}\text{C} \text{H}_3 \text{O}^-
\end{align*}
\]

• Half life of \(^{13}\)C-MNoP~1 day at 25C, 6-10 days @ 6C. (Otton et al. 2008)
Sample Treatment

• Reactions terminated by addition of 5mL MeOH+vortexing.

• Samples spiked with internal standards and stored in freezer until extraction.

• Extraction using method adapted from Powley et al. (2005) (MeOH+EnviCarb cleanup).

• LC-MS/MS analysis.
Evidence for volatilization of EtFOSE in 25°C inactive sediments
• Formation of products not observed
• No microbial activity (based on 13C-MnP and microbial test strips)
• No depletion of negative control.
Results - EtFOSE incubations

\[
\text{EtFOSE} \xrightarrow{\text{incubations}} \text{EtFOSAA} \to \text{EtFOSA} \to \text{FOSAA}
\]

![Diagram showing the transformation of EtFOSE to EtFOSA and FOSAA](image)

Graphs

EtFOSA
- **Graph** showing the concentration of EtFOSA over time.
- **Axes**:
 - X-axis: Time (days)
 - Y-axis: Concentration (ng/g)
- **Data points**:
 - 4°C inactive sediments
 - 25°C inactive sediments
 - 4°C active sediments
 - 25°C active sediments

FOSAA
- **Graph** showing the concentration of FOSAA over time.
- **Axes**:
 - X-axis: Time (days)
 - Y-axis: Concentration (ng/g)
- **Data points**:
 - 4°C inactive sediments
 - 25°C inactive sediments
 - 4°C active sediments
 - 25°C active sediments
Results-EtFOSE incubations

\[\text{EtFOSE} \rightarrow \text{EtFOSAA} \rightarrow \text{EtFOSA} \]

\[\text{PFOA (minor)} \rightarrow \text{PFOS} \rightarrow \text{FOSA} \rightarrow \text{FOSAA} \]

Graphs showing concentration of PFOS and FOSA over time at different temperatures.
Summary-EtFOSE incubations

• Biodegradation pathway in sediment consistent that observed in sludge by Lange (2000), Boulanger et al. (2005), Rhoads (2008).

• **EtFOSE biodegradation:** EtFOSAA, PFOS, EtFOSA major products.

% of dose at T=120 days

- **25°C EtFOSE experiment:**
 - EtFOSE: 28%, EtFOSAA: 39%, PFOS: 12%, EtFOSA: 6.4%, FOSAA: <3%

- **4°C EtFOSE experiment:**
 - EtFOSE: 13%, EtFOSAA: 53%, PFOS: 31%, EtFOSA: 1.7%, <1%
Take home messages—EtFOSE biodegradation sediment

• EtFOSE Biodegradation half life in sediment was ~4× greater at 4°C compared to 25°C (160 versus 44 days, respectively).

• Biodegradation half life of EtFOSE in sediment much greater than in sludge (1-4 days @ 25-30°C).

Comparison of EtFOSE biodegradation half life in sediment versus sludge
Results-SAmPAP diester incubations

SAmPAP diester

Concentration (ng/g)

Time (days)
Results - SAmPAP diester incubations

SAmPAP diester

SAmPAP monoester

EtFOSE

PFOS

Concentration (ng/g)

Time (days)

△ 4°C inactive sediments □ 25°C inactive sediments ▲ 4°C active sediments □ 25°C active sediments
Results-SAmPAP diester incubations

• Half life of SAmPAP diester estimated from lower bounds 95% confidence interval of the slope.

• SAmPAP sediment $t_{1/2}$ @ 25°C = >1 year
• SAmPAP sediment $t_{1/2}$ @ 4°C = ~10 years
Summary

1) EtFOSE biodegraded to PFOS in sediment but half life considerably longer than in sludge (t\(_{1/2}\)=44 days in sediments versus ~1-4 days in sludge at ~25°C).

2) No significant biodegradation observed for SAmPAP diester over 120 days (t\(_{1/2}\) > 1 year in sediments at 25°C).
Implications

PFOS-precursors are sufficiently long-lived in sediments to be a potentially significant source of PFOS for benthic organisms (consistent with hypotheses of Martin et al. 2004, Loi et al. 2011, Asher et al. 2012).
Acknowledgements

Fisheries and Oceans Canada Pêches et Océans Canada

AXYS Analytical Services Ltd.

SFU

NSERC CRSNG
Questions?

Jonathan Benskin
AXYS Analytical Services Ltd / Institute of Ocean Sciences
jbenskin@axys.com